The ironic implication of wanting more self-control
Liad Uziel / Bar-Ilan University

Introduction

A large volume of research documents the adaptive benefits of high self-control. Self-control facilitates goal-attainment, interpersonal and social success, as well as academic achievement (e.g., Mischel, Shoda, & Peake, 1988). Self-control also has a few downsides: Exerting self-control involves making immediate sacrifices and high trait self-control is associated with more secure yet somewhat less exciting life. Most people would probably like to have more self-control, but it is reasonable to expect that some people may seek at times less self-control.

Self-Control Motive (SCM) represents the extent to which one wants to have more self-control. That is, it reflects one’s subjective sense of success in attaining a desired level of self-control. Because self-control serves many valued goals, aspiration to improve self-control could facilitate long-term adaptation. Notwithstanding, the present research focuses on short-term implications of SCM. It is suggested that in the face of an ongoing self-control struggle, high SCM could have counterproductive effects via highlighting individual’s current incapacity (i.e., actual self-/ought self-discrepancy; Higgins, 1987). In bringing one’s incapacity to one’s awareness, SCM causes feeling of stress, cognitive withdrawal, and performance decrement (e.g., Carver, 1979).

The present research introduces 4 studies that explored the effect of SCM on stress and performance under demanding conditions. Strong SCM was hypothesized to bring about negative short-term effects. In modeling SCM, a newly-developed SCM scale was used. The scale comprises of 8 items (e.g., I want to be more self-disciplined, I want to be better able to resist temptation, I want to have more control over my feelings). Respondents rate their level of agreement on a 5-point scale. Pretesting indicated high reliability (e.g., Cronbach’s alpha = .84, N = 182).

Study 1: SCM and stress reaction

Overview: This study explored longitudinally the effect of increasing academic pressure on students’ self-control motives. It also explored the role of self-control motive in mediating ensuing stress reaction.

Participants: Eighty students (83% females; Mage = 23) volunteered for the two measurement occasions.

Tools & Procedure: In T1 (first two weeks of the Fall semester) and T2 (final two weeks of the Fall semester) participants filled in the SCM trait self-control scale (Tangney et al., 2004), and a stress measure collecting their current level of academic stress.

Results:
- Compared with T1, in T2 participants felt more stress (4.61 ± 5.30; p < .01), less self-control (3.32 ± 3.18; p < .01), and a stronger SCM (3.63 ± 3.78; p < .05).
- (T1) SCM was correlated (r = .54; p < .01) with trait self-control and with academic stress (r = .29; p < .05).
- (T1) SCM was associated with greater (T2) academic stress (β = .31; p < .05), and not vice-versa, implying that the causal process starts with one’s level of self-control motive (controlling for one’s level of trait self-control), See Figure 1.
- The effect was stronger among low trait self-control individuals.

Study 2: SCM and academic achievement

Overview: This study examined the longitudinal impact of the SCM on academic achievement. Participants: Forty-six students (83% females; Mage = 23) volunteered to participate in the two measurement occasions.

Tools & Procedure: In T1 (first weeks of the Spring semester) participants completed the SCMS, and the trait self-control scale (Tangney et al., 2004). Ps also reported about their Fall semester grade in a year-long course (e.g., psy) and indicated whether they wished to improve the grade. They also reported about their SAT score. In T2 (after the final exams) participants reported about their Spring semester grade courses.

Results:
- SCM (β = 3.56; SD = .03) was negatively correlated (r = -.43; p < .01) with trait self-control (M = 3.23; SD = .02) but not with course grades.
- SCM interacted with students’ wish to improve their grade (β = .44; p < .05; controlling for trait self-control and SAT score), See Figure 2.
- Among students who wanted to improve their grade (n = 16), SCM was negatively associated with grade improvement (β = -.55; p < .07).
- SCM was not associated with grade improvement among students not wishing to improve their grade.

Study 3: Task persistence

Overview & Participants: Participants’ (43 students; 54% females; Mage ± 24) self-control capacity was measured following ego-depletion manipulation.

Tools & Procedure: On arriving at the lab participants completed the trait self-control scale and the SCMS. Next, participants in the experimental (ego-depletion) condition (n = 22) performed a complex text copying task (e.g. using non-dominant hand), whereas those in the control condition (n = 21) performed a simple version. Level of self-control was measured by timing Ps persistence in finding uses to objects.

Results:
- Main effects were found for SCM (β = .81, p < .01), for condition (β = -.37, p < .05; indicating more persistence in the control condition), but not for self-control. A significant interaction (β = -.49, p < .05; controlling for trait self-control) revealed that (See Figure 3):
 - SCM facilitated persistence in the control condition (β = 174.87, p < .01) but not in the experimental condition (β < 1).

Study 4: Task performance

Overview & Participants: Participants’ (43 students; 51% males; Mage = 19) self-control capacity was measured among low and high self-control individuals.

Tools & Procedure: On arriving at the lab participants completed the trait self-control scale and worked for several minutes on a thought listing tasks. Responses were judged for SCM-related content using a scale ranging from 1 to 20 (M = 11.92; SD = 1.96). Level of self-control was measured with Ps ability to solve many difficult anagrams as possible.

Results:
- Main effect was found for SCM (β = .28, p < .06) but not for self-control. A significant interaction (β = .29, p < .04) revealed that (See Figure 4): SCM was associated with solving fewer anagrams among low self-control individuals (β = -.34, p < .01), but not among high self-control individuals (β = -.02, ns).

Conclusions

- Self-control has numerous benefits. On average, people wish they had more self-control.
- However, 4 studies showed that a strong SCM has mostly negative effects on psychological and behavioral outcomes.
- A strong SCM predicted increased stress and reduced ability to exert self-control when demands were perceived as taxing one’s ability.
- The effects showed even after controlling for trait self-control, but they were sometimes stronger among low self-control individuals.
- Future studies should explore long-term effects of SCM as well as ways to adaptively utilize strong SCM.