Rotating accelerator-mode islands

Oded Barash and Itzhack Dana

Minerva Center and Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel

(Received 22 December 2006; revised manuscript received 21 February 2007; published 17 May 2007)

The existence of rotating accelerator-mode islands (RAIs), performing quasiregular motion in rotational resonances of order $m>1$ of the standard map, is firmly established by an accurate numerical analysis of all the known data. It is found that many accelerator-mode islands for relatively small nonintegrability parameter K are RAIs visiting resonances of different orders $m\leq 3$. For sufficiently large K, one finds also “pure” RAIs visiting only resonances of the same order, $m=2$ or $m=3$. RAIs, even quite small ones, are shown to exhibit sufficient stickiness to produce an anomalous chaotic transport. The RAIs are basically different in nature from accelerator-mode islands in resonances of the “forced” standard map which was extensively studied recently in the context of quantum accelerator modes.

DOI: 10.1103/PhysRevE.75.056209

PACS number(s): 05.45.Ac, 45.05.+x, 05.45.Mt

I. INTRODUCTION

During the last three decades, the classical concept of “accelerator mode” (AM) has become of central importance in the theory of chaotic transport in Hamiltonian systems [1–17]. Recently, this concept has also provided an illuminating explanation [18–20] for a purely quantum acceleration of kicked atoms falling under gravity, observed in atom-optics experiments [21–23]. AMs are generalized periodic orbits (POs) of Hamiltonian maps having a translational symmetry in phase space. A paradigmatic example is the standard map [1]

$$M: \quad p_{t+1} = p_t + K \sin(x_t), \quad x_{t+1} = x_t + p_{t+1} \mod(2\pi),$$

(1)

where p is the angular momentum, x is the angle, K is a nonintegrability parameter, and t is the “integer” time. The map (1) and its orbit structure are translationally invariant in p with period 2π on the cylindrical phase space $-\pi < p < \pi$, $0 \leq x < 2\pi$. This allows one to define consistently a PO of (minimal) period n of (1) in a generalized fashion:

$$p_{t+n} = p_t + 2\pi w, \quad x_{t+n} = x_t,$$

(2)

where w is an integer, the “jumping index.” For $w=0$, Eq. (2) corresponds to a usual (closed) PO on the cylinder while for $w \neq 0$ the PO is an AM with average acceleration $2\pi w/n$ per map iteration. If the AM is stable, its n points are surrounded by islands. Stickiness to the boundaries of AM islands can lead to a superdiffusion of the chaotic motion, $(p^2_t) \approx w^n$, $1 < \mu \leq 2$ [8–13], where $\langle \cdot \cdot \cdot \rangle$ denotes ensemble average in the chaotic region.

AMs can arise only for sufficiently large K, $K > K_c \approx 0.9716$, when no rotational tori exist [24] and unbounded motion in the p direction becomes then possible. Thus, AM islands are basically different in nature from the well-known rotational-resonance islands which exist for arbitrarily small K. The latter islands form the most basic component of ordered and stable motion in the twist map (1). They are associated with the closed ($w=0$) “Poincaré-Birkhoff” or “ordered” POs [25,26] which are dynamically equivalent to pure rotations—i.e., the $K=0$ POs—and emerge from them as K is “switched on” [25]. Despite the difference above, however, one may expect from the following general arguments the existence of an interesting kind of AM islands, resembling rotational-resonance islands in some aspects.

It is known [27] that rotational resonances for the standard map (and similar maps [28,29]) can be constructed in a well-defined way for all K; a resonance of order m is a chain of m “zones” built on a hyperbolic ordered PO of period m (see more details in Sec. II). Strong numerical evidence [27] and exact results [28,30] indicate that for $K > K_c$ the resonances so constructed give a partition of phase space. This implies that an arbitrary orbit of (1) consists of quasiregular segments within resonances, where each segment is a piece of the orbit performing a number of rotations in one resonance [31,32]. Now, a general stability island must lie entirely in some resonance zone [17] and will thus perform a similar quasiregular motion within resonances. Clearly, the rotational quasiregularity is evident only when the island visits its resonances of order $m > 1$. AM islands visiting $m > 1$ resonances are most interesting objects since they exhibit a “hybrid” nature: In some time intervals, they rotate like $m > 1$ resonance islands in a near-integrable regime ($K < 1$) and at other times they accelerate due to particular transitions between resonances occurring only for $K > K_c$. We thus call these islands, if they exist, “rotating accelerator-mode islands” (RAIs). The RAIs should have a distinct impact on Hamiltonian transport by generating a new kind of chaotic flight, featuring a quasiregular steplike structure due to the “horizontal” rotation within resonances. General ideas in Ref. [17] were illustrated only for the most well-known AM islands of the standard map, those with central period $n=1$ which emerge for $K > 2\pi$ [1,3,4]. These islands lie within $m=1$ resonances [17]. The question of the actual existence of RAIs was not addressed in Ref. [17].

In this paper, the existence of RAIs in the standard map is firmly established by an accurate numerical analysis, examining also all the known data on AM islands of which we are aware. In this analysis, the sequence of resonances visited by an orbit is determined by using the efficient method introduced in Ref. [32]. A large fraction of the AM islands for $K < 2\pi$, listed in Ref. [4], are found to be RAIs visiting resonances of different orders $m \leq 3$. Some of the significant peaks in the chaotic-diffusion coefficient observed in Ref. [4]
for $K<2\pi$ are due to RAIs. Among all the period-2 AM islands for $2\pi<K<20$, listed in Ref. [3], we have found RAIs visiting resonances of the same order $m=2$ (“pure” $m = 2$ RAIs). We discover at $K \approx 8.916$ an apparently new AM island, a pure $m=3$ RAI. It is shown that even quite small RAIs exhibit sufficient stickiness to produce an anomalous chaotic transport. Due to limitations in our available computational resources, we were not able to find RAIs visiting resonances of order $m > 3$.

The paper is organized as follows. In Sec. II, we briefly summarize the notion of rotational quasiregularity within resonances. In Sec. III, the existence of RAIs is established by an accurate determination of the quasiregularity characteristics of many AM islands. In Sec. IV, we briefly study some of the effects of RAIs on Hamiltonian chaotic transport. A discussion and conclusions are presented in Sec. V, where we also consider the basic difference between RAIs and AM islands visiting resonances of the “forced” standard map [map (1) with the addition of a constant force], which has attracted much attention recently in the context of “quantum AMs” [18–20,22,23].

II. ROTATIONAL RESONANCES AND QUASIREGULARITY

We briefly summarize here the definition of rotational resonances for the standard map [27] and the notion of quasiregularity within these resonances [17,31,32]. Let us first recall the concept of rotationally ordered POs [26]. In the pure-rotation case of $K=0$, with constant $p_1=p_0$, the sequence of orbit angles x_i is given by $x_i = x_0 + p_i \theta \mod(2\pi)$. For rational winding number $v = p_0/(2\pi) = l/m$, where (l,m) are coprime integers, the orbit must be a PO with period m; the m PO points are uniformly distributed on the circle $[0, 2\pi]$—i.e., the “gap” G_i between x_i and a neighboring point has the constant width $2\pi/m$, independent of i. The rotational motion on the circle is expressed by the fact that G_{i+1} is also a gap, always separated from G_i, by $|l| - 1$ gaps. Now, for $K \neq 0$, the winding number v for a closed ($w=0$) PO is the average value of $p_i/(2\pi)$ and v is again rational. A gap is a pair of PO points having neighboring values of x_i in the circle. Then, a rotationally ordered PO is a closed PO having the two main characteristics of a $K=0$ PO: (a) $v = l/m$, where m is the PO period and (l,m) are coprime. (b) If G_i is a gap, G_{i+1} is also a gap, always separated from G_i, by $|l| - 1$ gaps. Unlike the case of $K=0$, however, the gap width generally depends on t.

An ordered hyperbolic PO with arbitrary winding number $v=l/m$ exists for all K [26]. One gap of this PO—say, G_0—appears to be always symmetrically positioned around the “dominant” symmetry line $x = \pi$—i.e., $\pi - x_l = x_g - \pi$, where L and R denote the left and right points, respectively, of G_0. The l/m resonance is now defined, briefly, as follows (see more details in Refs. [17,27] and refer to the examples in Fig. 1). One constructs in G_0 a closed region $Z_l^0(l/m)$ bounded by four curved segments, which are suitably chosen pieces of the stable and unstable manifolds of L and R under the map M^m, for example, $Z_0^0(0/1)$ is the region LERF bounded by solid lines in Fig. 1. The l/m resonance is then the chain of m zones $Z_l^0(l/m)=M^{-1}Z_l^0(l/m)$, $t=0,\ldots,m-1$; see, e.g., resonances $0/1$ and $1/2$ in Fig. 1. Clearly, the zone $Z_l^0(l/m)=M^{-m}Z_l^0(l/m)$ lies again in G_0 and differs from the “principal” zone $Z_l^0(l/m)$ by two turnstiles created by homoclinic oscillations under M^{-m}; for example, in Fig. 1 the lower (upper) turnstile of $0/1$ is the region bounded by the dashed-line segment FBH (GAE) and the solid line. Each turnstile consists of two lobes of equal area. By construction, the lobes outside (inside) $Z_l^0(l/m)$ form the region entering (exiting) resonance l/m in one iteration of M.

Strong numerical evidence [27,32] and exact results [28,30] indicate that for $K>K_0 \approx 0.9716$ the resonances constructed as above give, for all l/m, a complete partition of phase space. This implies that a generic orbit must have all its points within resonances and must therefore perform a quasiregular motion as follows. An initial orbit point in, say, resonance l/m will “rotate,” jumping from zone $Z_l^0(l/m)$ in gap G_i to zone $Z_l^{(i+1)}(l/m)$ in gap G_{i+1}, until it will arrive at $Z_l^0(l/m)$. If it does not lie in an exiting turnstile lobe, it will rotate again, returning to $Z_l^0(l/m)$ after m iterations. If, on the other hand, it lies in an exiting turnstile lobe, more precisely in the overlap of this lobe with an entering turnstile lobe of resonance l'/m' (such overlaps are the shaded regions in Fig. 1), it will escape to zone $Z_l^{(m-1)}(l'/m')$ of l'/m'; it will then perform at least a finite number of rotations (of m' iterations each) in l'/m' before escaping to another resonance. Thus, the orbit is a sequence of quasiregular segments, each lying in some resonance l/m, $r_0 < r < r_\infty$, and having a length of q_m iterations, where q_m is the number of rotations performed in l/m. We then say that the orbit is of quasiregularity type $\pi = \ldots, (l/m)_{q_m}, (l_{r+1}/m_{r+1})_{q_{r+1}}, \ldots$ [31,32]. As an example, Fig. 1 shows five orbit points, la-
beled by \(t=1, \ldots, 5 \), in two consecutive quasiregular segments \((0/1) \) and \((1/2) \).

In the case that the orbit is a PO—i.e., it satisfies Eq. (2)—its type can be written in a more compact form [17,31]. Clearly, a PO can visit only a finite number \((d) \) of resonances on the torus \(0 \leq x, p \leq 2 \pi \) [by taking also \(p \), modulo \(2 \pi \) in (1)]. Thus, on the cylinder, it will generally visit a set of \((d) \) resonances \(\{l_i/m_i\}_{i=1}^d \) and all the translates \(\{l_i/m_i+bw_x\}_{i=1}^d \) of this set in the \(b \) direction, where \(b \) takes all the integer values and \(w_x \) is some integer related to \(w \); see below. The type \(\tau \) of the PO must be then essentially the repetition of a “block” \(\Gamma \), \(\tau=\ldots, \Gamma(-w_x), \Gamma(0), \Gamma(w_x), \Gamma(2w_x), \ldots \), where \(\Gamma(bw_x)=(l_i/m_i+bw_x)_{q_i}, \ldots, (l_i/m_i+bw_x)_{q_d} \). If the periodic cycle is completed exactly after visiting one block, one has \(w=w_x \) and the period \(n=n_x=\sum_{i=1}^d q_i m_i \). Generally, however, the periodic cycle is completed only after visiting more than one block—say, \(c \) blocks. Then, \(w=cm_x \) and \(n=cn_x \). The type \(\tau \) of the PO will be thus specified by \(\Gamma(w_x,c) \), where \(\Gamma \)

Table I. Quasiregularity type \(\tau=(\Gamma:w_x,c) \) of AM island chains for \(K_c<K<2\pi \). The period \(n \), jumping index \(w \), and initial conditions \((x_0,p_0) \) are also shown.

<table>
<thead>
<tr>
<th>(K)</th>
<th>(\tau=(\Gamma:w_x,c))</th>
<th>(n)</th>
<th>(w)</th>
<th>((x_0,p_0)/(2\pi))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>((0/1)_3,(1/3)_1, (1/2)_1, (2/3)_1;1,1)</td>
<td>11</td>
<td>1</td>
<td>(0.097, 0.0)</td>
</tr>
<tr>
<td>2</td>
<td>((0/1)_3, (1/2)_1;1,1)</td>
<td>7</td>
<td>1</td>
<td>(0.1085, 0.0)</td>
</tr>
<tr>
<td>3</td>
<td>((0/1)_4, (1/2)_1, (1/1)_3, (3/2)_1;2,1)</td>
<td>11</td>
<td>2</td>
<td>(0.102632, 0.0)</td>
</tr>
<tr>
<td>4</td>
<td>((0/1)_3, (1/2)_1;1,1)</td>
<td>5</td>
<td>1</td>
<td>(0.098, 0.0)</td>
</tr>
<tr>
<td>5</td>
<td>((0/1)_3, (1/2)_1;1,2)</td>
<td>10</td>
<td>2</td>
<td>(0.099, 0.00151)</td>
</tr>
<tr>
<td>6</td>
<td>((0/1)_3, (1/2)_1;1,1)</td>
<td>5</td>
<td>1</td>
<td>(0.105, 0.0)</td>
</tr>
<tr>
<td>7</td>
<td>((0/1)_3, (1/2)_1;1,1)</td>
<td>4</td>
<td>1</td>
<td>(0.33445, 0.4)</td>
</tr>
<tr>
<td>8</td>
<td>((0/1)_3, (1/2)_1;1,1)</td>
<td>8</td>
<td>2</td>
<td>(0.344, 0.412)</td>
</tr>
<tr>
<td>9</td>
<td>((0/1)_3, (1/2)_1;1,1)</td>
<td>11</td>
<td>1</td>
<td>(0.3851, 0.0)</td>
</tr>
<tr>
<td>10</td>
<td>((0/1)_3, (1/2)_1;1,1)</td>
<td>7</td>
<td>1</td>
<td>(0.64, 0.0)</td>
</tr>
<tr>
<td>11</td>
<td>((0/1)_9, (1/3)_1, (1/1)_2, (5/3)_1;2,1)</td>
<td>17</td>
<td>2</td>
<td>(0.336347, 0.0)</td>
</tr>
<tr>
<td>12</td>
<td>((0/1)_3, (1/2)_1;1,1)</td>
<td>7</td>
<td>1</td>
<td>(0.6195, 0.0)</td>
</tr>
<tr>
<td>13</td>
<td>((0/1)_3, (1/1)_1;2,1)</td>
<td>5</td>
<td>2</td>
<td>(0.0667, 0.0)</td>
</tr>
<tr>
<td>14</td>
<td>((0/1)_3, (1/1)_1;2,1)</td>
<td>5</td>
<td>2</td>
<td>(0.07, 0.0)</td>
</tr>
<tr>
<td>15</td>
<td>((0/1)_3, (1/1)_1;2,1)</td>
<td>3</td>
<td>1</td>
<td>(0.285, 0.0)</td>
</tr>
<tr>
<td>16</td>
<td>((0/1)_3, (1/1)_1;2,1)</td>
<td>3</td>
<td>1</td>
<td>(0.34805, 0.0)</td>
</tr>
<tr>
<td>17</td>
<td>((0/1)_3, (1/1)_1;2,2,3,4,1)</td>
<td>7</td>
<td>4</td>
<td>(0.04432, 0.0)</td>
</tr>
<tr>
<td>18</td>
<td>((0/1)_3, (1/1)_1;2,1)</td>
<td>3</td>
<td>2</td>
<td>(0.277, 0.0)</td>
</tr>
<tr>
<td>19</td>
<td>((0/1)_3, (1/1)_1;2,1)</td>
<td>4</td>
<td>2</td>
<td>(0.055, 0.0)</td>
</tr>
<tr>
<td>20</td>
<td>((0/1)_3, (1/1)_1;2,1)</td>
<td>5</td>
<td>3</td>
<td>(0.338162, 0.0)</td>
</tr>
<tr>
<td>21</td>
<td>((0/1)_3, (1/1)_1;2,2)</td>
<td>6</td>
<td>4</td>
<td>(0.22265, 0.0)</td>
</tr>
<tr>
<td>22</td>
<td>((0/1)_3, (1/1)_1;2,1)</td>
<td>3</td>
<td>2</td>
<td>(0.334, 0.0)</td>
</tr>
<tr>
<td>23</td>
<td>((0/1)_3, (1/1)_1;2,1)</td>
<td>7</td>
<td>2</td>
<td>(0.3255, 0.0)</td>
</tr>
<tr>
<td>24</td>
<td>((0/1)_3, (1/1)_1;2,1)</td>
<td>6</td>
<td>4</td>
<td>(0.0286, 0.0)</td>
</tr>
</tbody>
</table>

Table II. Quasiregularity type \(\tau=(\Gamma:w_x,c) \) of AM island chains for \(2\pi<K<20 \). Also shown are the period \(n \), the jumping index \(w \), and the stability interval \((K_1,K_2)\) of the island chain with corresponding initial conditions \((x_0,p_0)\) for \(K=K_{0,1} \).

<table>
<thead>
<tr>
<th>(\tau=(\Gamma:w_x,c))</th>
<th>(n)</th>
<th>(w)</th>
<th>(K_1)</th>
<th>((x_0,p_0)/(2\pi), K=K_{0,1})</th>
<th>(K_2)</th>
<th>((x_0,p_0)/(2\pi), K=K_{0,1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0/1)_3;1,1)</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>(0.2500, 0.0)</td>
<td>(0.34059, 0.0)</td>
<td></td>
</tr>
<tr>
<td>((0/1)_3;1,2)</td>
<td>2</td>
<td>7</td>
<td>448340</td>
<td>(0.34059, 0.0)</td>
<td>7.13400</td>
<td>(0.3845, 0.00298)</td>
</tr>
<tr>
<td>((1/2)_1;1,1)</td>
<td>8</td>
<td>66793</td>
<td>(0.27999, 0.321577)</td>
<td>6.88826</td>
<td>(0.28696, 0.32717)</td>
<td></td>
</tr>
<tr>
<td>((1/3)_1;1,1)</td>
<td>33</td>
<td>91599</td>
<td>(0.934594, 0.65252)</td>
<td>9.19039</td>
<td>(0.934641, 0.651819)</td>
<td></td>
</tr>
<tr>
<td>((0/1)_3;1,2)</td>
<td>1</td>
<td>2</td>
<td>125663</td>
<td>(0.2500, 0.0)</td>
<td>13.1876</td>
<td>(0.2990, 0.0)</td>
</tr>
<tr>
<td>((0/1)_3;2,1)</td>
<td>2</td>
<td>14</td>
<td>22417</td>
<td>(0.097, 0.0)</td>
<td>13.3948</td>
<td>(0.3233, 0.0494)</td>
</tr>
<tr>
<td>((1/2)_1;2,1)</td>
<td>4</td>
<td>15</td>
<td>23941</td>
<td>(0.268606, 0.295564)</td>
<td>15.24129</td>
<td>(0.270938, 0.29762)</td>
</tr>
<tr>
<td>((0/1)_3;3,1)</td>
<td>1</td>
<td>3</td>
<td>201456</td>
<td>(0.2500, 0.0)</td>
<td>19.29629</td>
<td>(0.2832, 0.0)</td>
</tr>
<tr>
<td>((0/1)_3;3,2)</td>
<td>2</td>
<td>6</td>
<td>129780</td>
<td>(0.2832, 0.0)</td>
<td>19.3728</td>
<td>(0.2998, 0.0333)</td>
</tr>
</tbody>
</table>
stands, e.g., for \(\Gamma(0) \). The average acceleration per iteration is \(2\pi w/n = 2\pi w/n_r \).

III. ROTATING ACCELERATOR-MODE ISLANDS

If a period-\(n \) PO is stable, each of its \(n \) points is the “center” of an island in a chain of \(n \) islands. As shown in Ref. [17], an island must lie entirely within the zone of some resonance \(l/m \). If this zone is the principal one, \(\mathbb{Z}^{(0)}(l/m) \), the island will be either outside the turnstiles or completely within the turnstile overlap (TO) of \(l/m \) with another resonance \(l'/m' \) [17]. Thus, the island will always lie entirely in the basic region [resonance zone (outside the turnstiles) or TO] where its center lies, so that one can characterize the island chain by the type \((l'/w,c) \) of its central PO. For example, the well-known period-1 AM islands arising for \(K > 2\pi|w| \) [1,3,4] must all lie within first-order \((m=1) \) resonances and their type is \(\tau = ((0/1); w, 1) \); this is because \(n = cn_r = c\Sigma_{r=1}^d q_r m_r \), implies, for \(n=1 \), that \(c=d=q_1=m_1=1 \). Since the fraction of phase space occupied by the \(m=1 \) resonances approaches 100% as \(K \) increases [27] and is already significant for \(K > K_c \), it is natural to ask about the existence

FIG. 2. Regions bounded by solid lines: resonances 0/1, 1/3, 1/2, and 2/3 (in ascending order) for \(K = 2.1834 \). The dashed lines define the resonance turnstiles. The points (solid circles) give the central PO of the AM island chain No. 1 in Table I; this is a RAI chain. The arrow indicates a point to which we shall refer in the caption of Fig. 6.

FIG. 3. Regions bounded by solid lines: resonances 1/2 and 3/2 for \(K = 8.68 \). The dashed lines define the resonance turnstiles. The four points, labeled by the time index \(t = 1, \ldots, 4 \), give the central PO and its iterate for the AM island chain No. 3 in Table II; this is a pure RAI chain.

FIG. 4. Regions bounded by solid lines: resonances 1/3 and 4/3 for \(K = 8.916 \). The dashed lines define the resonance turnstiles. The six points, labeled by the time index \(t = 1, \ldots, 6 \), give the central PO and its iterate for the AM island chain No. 4 in Table II; this is a pure RAI chain.

FIG. 5. Regions bounded by solid lines: resonances 1/2, 3/2, and 5/2 for \(K = 15.24035 \). The dashed lines define the resonance turnstiles. The four points, labeled by the time index \(t = 1, \ldots, 4 \), give the central PO and its iterate for the AM island chain No. 7 in Table II; this is a pure RAI chain. Point 2 in 1/2 is mapped into point 3 in 5/2 by turnstile overlap, “jumping over” 3/2; this leads to \(w = 2 \).
of RAIs—i.e., AM islands visiting resonances of order $m > 1$.

To answer this question, we have carefully examined all the data on standard-map AM islands of which we are aware. Most of these data appear in Refs. [3,4,14]; apparently new AM islands have been also considered. The type of an island chain or of its central PO was accurately determined by using the efficient method introduced in Ref. [32]. Briefly, this method is based on the fact, proven in Ref. [32], that one can always find a sawtooth map M, i.e., the map with $\sin x$ replaced by a sawtooth function and with K replaced by a properly chosen parameter K_s such that for each orbit O of M there exists an orbit O_s of M_s visiting the same resonances as those visited by O. Since the boundaries of the resonances of M_s are given by simple analytic expressions [28], this allows one to determine the type of O without calculating the complicated resonance boundaries of M.

Our results are presented in Tables I and II. In Table I, we give the type τ of many AM island chains for $K_s < K < 2\pi$. These chains, most of which appear in Table I in Ref. [4], were chosen in a well-defined and natural way; i.e., they have at least one island lying on $p=0$ (see also next section), except for chains Nos. 7 and 8 which are given for future reference. Initial conditions (x_0,p_0) within the islands are specified, as well as the values of K, n, and w. We see that more than half of these island chains (Nos. 1–12, 15, and 16), mostly at the smaller values of K, are RAIs visiting resonances of order $m=2$ and/or $m=3$. The central PO for RAI No. 6, with $n=5$ and $w=1$, consists of the five points shown in Fig. 1. As another example, we show in Fig. 2 the $n=11$ points of the central PO for RAI No. 1, with $w=1$, together with the four resonances visited, $l/m = 0/1, 1/3, 1/2, 2/3$ (solid lines), and their turnstiles (dashed lines). RAI No. 5, with $n=10$, emerges by period-doubling bifurcation from RAI No. 4 with $n=5$. This is reflected in the fact that the types of RAIs Nos. 4 and 5 have the same basic block Γ but $c=w=2$ for RAI No. 5, in contrast with $c=w=1$ for RAI No. 4. Similarly, RAI No. 8, with $n=8$, emerges by period-doubling bifurcation from RAI No. 7 with $n=4$.

In Table II, we give the type τ of AM islands with $n = 1, 2, 3$ for $2\pi < K < 20$. Most of these islands, those with $n=1, 2$, were selected from Table I in Ref. [3]. As in that

FIG. 6. (a) RAI surrounding the point indicated by an arrow in Fig. 2, $K=2.1834$; (b) RAI surrounding point 1 in Fig. 3, $K=8.68$; (c) RAI surrounding point 2 in Fig. 4, $K=8.916$; (d) RAI surrounding point 1 in Fig. 5, $K=15.24035$.
work, we give in Table II the stability interval \((K_1, K_2)\) of each island and corresponding initial conditions \((x_0, p_0)\) for \(K = K_1, 2;\) the values of \(n\) and \(w\) are also shown. Islands Nos. 2, 6, and 9 emerge by period-doubling bifurcation from islands Nos. 1, 5, and 8, respectively. All these islands lie in \(m = 1\) resonances. The only AM islands that we were able to identify as RAIs in this \(K\) interval are Nos. 3, 4, and 7. These RAIs are “pure”; i.e., they visit resonances of the same order \(m = 2\) (RAIs Nos. 3 and 7) or \(m = 3\) (RAI No. 4). The latter RAI is apparently a new AM island. Figures 3–5 show the RAIs Nos. 6–8, 10, 15, and 16. In particular, the peak due to RAI No. 16 is relatively broad in \(K\).

If \(\mathcal{E}\) is an ensemble lying entirely within the connected chaotic region and there exist AM islands exhibiting sufficient stickiness, one observes an anomalous, superdiffusive chaotic transport \(\langle(p_1 - p_0)^2\rangle_{\mathcal{E}} \propto t^\mu\) with anomalous exponent \(\mu, 1 < \mu < 2\) \([8–13]\). As far as we are aware, this anomalous transport in the standard map was observed only for AM islands whose central PO has period \(n = 1\) (such as islands Nos. 1, 5, and 8 in Table II) or satellites of these islands. All these islands lie in \(m = 1\) resonances and are not RAIs. To show that RAIs affect chaotic transport, we consider, as a first example, the case of RAI No. 7 in Table I \((K = 2.975)\); see Fig. 8. The ensemble \(\mathcal{E}\) consists of the points \((x_0, p_0)\) with \(p_0 = 0\) and \(x_0\) taking \(10^5\) values uniformly distributed in \([0, 2\pi]\). This ensemble is chaotic with the exception of \(\sim 20\%\) of it lying in ordinary (non-AM) islands within the 0/1 resonance. The only source of anomalous transport can be stickiness to the boundary of the RAI above, since no other AM islands seem to exist for \(K = 2.975\). To verify that this RAI boundary is indeed sticky, we have iterated the ensemble \(t = 10^5\) times and plotted only the points \((x_1, p_0 \mod (2\pi))\), for all \(t' \leq t\) and with \(p_1/(2\pi) > 100\); since the RAI has central period \(n = 4\), \(p_1/(2\pi)\) cannot be larger than \(t/4 = 2500\). The results are shown in the inset of Fig. 8, and one can see a strong stickiness to the RAI boundary. As a consequence, we observe a clearly superdiffusive chaotic transport with anomalous exponent \(\mu \approx 1.28\); see Fig. 9.

As other examples, we have considered the much smaller RAIs shown in Figs. 6(b)–6(d). To verify the stickiness to the boundary of these RAIs, we first chose \(\mathcal{E}\) as a chaotic transport in the presence of RAIs

We now briefly study the effect of RAIs on chaotic transport. Given an ensemble \(\mathcal{E}\) of initial conditions \((x_0, p_0)\) in phase space for \(K > K_{\text{c}}\), the transport of \(\mathcal{E}\) is usually measured by the time evolution of \(\langle(p_1 - p_0)^2\rangle_{\mathcal{E}}\), where \(\langle \cdots \rangle_{\mathcal{E}}\) denotes average over \(\mathcal{E}\). In the absence of AM islands, with \(\mathcal{E}\) lying entirely within the connected chaotic region, \(\langle(p_1 - p_0)^2\rangle_{\mathcal{E}} = 2D t\) for large \(t\), where \(D\) is the chaotic-diffusion coefficient \([1]\). In Ref. \([4]\), \(\mathcal{E}\) was naturally chosen as a physical ensemble of well-defined angular momentum \(p = p_0\), \(0 \leq x_0 < 2\pi\), and the quantity \(D_{\mathcal{E}, t}(K) = \langle(p_1 - p_0)^2\rangle_{\mathcal{E}}/(2t)\) was calculated at fixed large \(t\) as a function of \(K\) for \(K_{\text{c}} < K < 2\pi\). Whenever an AM island crosses the line \(p = p_0\) as \(K\) is varied, \(D_{\mathcal{E}, t}(K)\) exhibits “ballistic” peaks; see Fig. 7 for \(p_0 = 0\) and Ref. \([4]\). The AM islands on \(p = 0\) in Table I were determined in this way. Some of the most significant peaks in Fig. 7 are due to RAIs—e.g., RAIs Nos. 6–8, 10, 15, and 16. In particular, the peak due to RAI No. 16 is relatively broad in \(K\).
ensemble in the close neighborhood of the RAI; see details in the caption of Fig. 10. The time evolution of \(\langle p_t - p_0 \rangle_e / (2\pi) \) was then calculated for sufficiently large \(t \); the results are shown in Fig. 10. We see that in a significant time interval [e.g., \(t \approx 100 \) in Fig. 10(b)], \(\langle p_t - p_0 \rangle_e / (2\pi) \) evolves essentially as if \(E \) were concentrated inside the RAI; i.e., it exhibits the steplike structure due to rotation in \(m=2 \) resonances [see inset of Figs. 10(a) and 10(c)] or in \(m=3 \) resonances [see inset of Fig. 10(b)] and its initial average slope is \(-w/n \). This is clear evidence for stickiness to the RAI boundary, leading to chaotic flights. In the course of time, more and more points of the ensemble leave the RAI boundary and enter the chaotic region. Then, \(\langle p_t - p_0 \rangle_e / (2\pi) \) starts to saturate around some constant value which should correspond to the center of a Gaussian distribution describing normal chaotic diffusion. The saturation value of \(\langle p_t - p_0 \rangle_e / (2\pi) \) in Fig. 10(c) is much larger than that in Figs. 10(a) and 10(b) due to the relatively large value of \(w/n=1 \) and to the much stronger stickiness, as one can see by comparing Fig. 6(d) with Figs. 6(b) and 6(c).

V. DISCUSSION AND CONCLUSIONS

In this paper, we have established the existence of a most interesting kind of stability island in the standard map, the RAI, exhibiting two diametrically opposite dynamical behaviors: The rotational motion, characteristic of the integrable \((K=0) \) case, and the acceleration which emerges only in the global-chaos regime of \(K > K_c = 0.9716 \). As indicated by Table I, RAIs appear to be abundant for sufficiently small \(K > K_c \) but they also exist in strong-chaos regimes (Table II), where \(m > 1 \) resonances are quite small and essentially all phase space is occupied by \(m=1 \) resonances. For large \(K > 2\pi \), it is possible to have turnstile overlap between resonances of the same order—e.g., resonances \(1/m \) and \(1/m + w \)—and pure RAIs can then arise; see Figs. 3–5. If the map (1) is restricted to the torus \(T^2: 0 \leq x, \ p < 2\pi \), by taking also

FIG. 9. Solid line: log-log plot of \(\langle p_t^2 \rangle_e \) for \(K = 2.975 \) (see more details in the text). Dashed line: linear fit to the solid line, with slope \(\mu = 1.28 \).

FIG. 10. Time evolution of \(\langle p_t - p_0 \rangle_e / (2\pi) \), where \(E \) is an ensemble of chaotic initial conditions (ICs) \((x_0, p_0)\) extracted from a grid covering the graph region of (a) Fig. 6(b) (19276 chaotic ICs out of 26867), \(K = 8.68 \); (b) Fig. 6(c) (15639 chaotic ICs out of 21600), \(K = 8.916 \); (c) Fig. 6(d) (10693 chaotic ICs out of 11788), \(K = 15.24035 \). The inset in (a), (b), and (c) shows a magnification of the first iterates with average slope \(-w/n = 1/2, 1/3, \) and 1, respectively. The steplike structure due to the stickiness to the boundaries of the pure RAIs is quite evident in all cases.
p_t modulo 2π, pure RAs look precisely like rotational-resonance islands in a near-integrable regime ($K \ll 1$). Stickiness to the boundary of RAs, especially of pure RAs, leads to chaotic flights featuring a quasiregular steplike structure due to the rotational motion within resonances; see Fig. 10. Such a quasiregular structure was observed recently [15] in the weak-chaos regime of a perturbed pseudochaotic map. We have shown here that it also occurs in strong-chaos regimes. It would be most interesting if one could establish the existence of pure RAs of very large order m. Such RAs may give rise to chaotic flights with significantly long quasiregular steps; these flights were shown to occur for the system studied in Ref. [15].

We now discuss possible quantum manifestations of RAs which may be observed experimentally. Let us start with some background. The classical concept of AM islands was used recently [18–20] to explain a purely quantum acceleration of kicked atoms falling under gravity, observed in atom-optics experiments [21–23]. This acceleration takes place for parameter values near quantum resonances, corresponding to relatively large values p_0 of a scaled Planck’s constant ρ, far from the semiclassical regime (see [33]). Nevertheless, it was shown [18] that $\rho = p_0 + \epsilon$ defines, for sufficiently small ϵ, a “quasiclassical” (or “pseudoclassical”) regime in which ϵ plays the role of a fictitious Planck’s constant; in this regime, the exact quantum dynamics for a cosinusoidal kicking potential can be approximately described by the classical map

$$M_{\Omega}: p_{t+1} = p_t + K \sin(x_t) + 2\pi \Omega, \quad x_{t+1} = x_t + p_{t+1} \mod(2\pi). \quad (3)$$

This is the “forced” standard map [34,35], with the constant “force” Ω related to gravity. Then, wave packets initially trapped in AM islands of the map (3) for small ϵ lead to “quantic AMs” (QAMs)—i.e., the purely quantum acceleration observed. This theoretical prediction in Ref. [18] was verified by various experiments [22,23], and a multitude of high-order QAMs with different winding numbers w/n were observed [23].

For $\Omega = 0$, the map (3) reduces to the standard map, which describes the quasiclassical regime $\rho = p_0 + \epsilon$ in the absence of gravity [36]. As far as we are aware, QAMs in this case have not been yet observed experimentally, apparently due to the much focus on the $\Omega \neq 0$ case until now. However, the $\Omega = 0$ QAMs are most interesting to study since they are basically different in nature from the $\Omega \neq 0$ ones, due to the difference between the AM islands in the two cases. This difference can be seen most clearly by comparing the RAs for $\Omega = 0$ with AM islands visiting resonances of the map (3) for $\Omega \neq 0$. Consider, for simplicity, the case of integer $\Omega \neq 0$ (the arguments below can be easily extended to the case of general rational Ω, treated in Refs. [19,20]). In this case, M_{Ω} and the standard map obviously coincide if both maps are restricted to the basic torus T^2. Thus, for sufficiently small K, there exist islands in rotational resonances l/m of M_{Ω} on T^2. On the cylinder, such an island corresponds to an AM island: In one iteration of the map (3), the island in zone $Z^{(l)}(l/m), t = 0, \ldots, m - 1$, will accelerate by jumping to zone $Z_{(l+1)}(l/m+\Omega)$ of resonance $l/m+\Omega \neq l/m$.

In the case of $\Omega = 0$, on the other hand, a RAI in resonance $l/m, m > 1$, will remain (rotate) in l/m for at least m (or a multiple of m) iterations before jumping to resonance $l/m + w$. The rotational motion of RAs in resonances is not featured by the AM islands above of M_0. This quasiregularity of RAs will have very clear quantum manifestations in the corresponding QAMs in a quasiclassical regime. QAMs on RAs should be experimentally observable using atom-optics techniques, at least for small $K < K_c$ and relatively large RAs, such as the RAI shown in Fig. 8. By introducing non-accelerating quasiregular segments in the QAM, one can control the quantum motion of atoms in a way which is not possible for $\Omega \neq 0$. The characterization of QAMs by the type $\tau(\Gamma; w, c)$ is much more detailed than the standard one given by the winding number w/n, used until now in QAM spectroscopy [23].

ACKNOWLEDGMENT

This work was partially supported by the Israel Science Foundation (Grant No. 118/05).

[33] The scaled Planck’s constant is usually denoted by τ (see, e.g., Ref. [18]) and gives the dimensionless time period of the kicks; here we denote it by ρ to avoid confusion with the type τ. At quantum resonances, $\rho=\rho_0=2\pi l$, where l is an integer. The semiclassical regime of small $\rho=\rho_0$ (very small time interval between kicks) cannot be well realized in atom-optics experiments since the kick is actually a pulse of finite width.