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Abstract .  Chaotic transport is studied for Hamiltonians H in which one coordinate, 
say q, is cyclic (i.e., it does not appear in H), leading to the conservation of the conju- 
gate coordinate ("momentum" p). It is assumed that the dynamics depends nontrivially 
on the "parameter" p in H. As a consequence, one expects to observe a variation of the 
global-transport properties, both normal and anomalous, in a generic chaotic ensem- 
ble that exhibits all values of p. By considering the realistic model system of charged 
particles interacting with an electrostatic wave-packet in a uniform magnetic field, 
it is shown that this variation can be actually quite strong. This finding may have 
applications to "filtering" sub-ensembles with well-defined values of p. 

Hamiltonian chaos (see, e.g., MacKay and Meiss 1987 and references therein) 
is a unique phenomenon in that it generically appears interleaved with or- 
dered/stable motions on all scales of phase space (Meiss 1986; Umberger and 
Farmer 1985), leading to long-time correlations (Karney 1983; Meiss and Ott 
1986) and quasiregularity (Dana I993) in the chaotic motion. A fundamental 
question is then to what extent the transport due to the deterministic chaos 
resembles that  associated with a truly probabilistic random process, such as 
Brownian motion (Chirikov 1979). This question has been investigated exten- 
sively during the last two decades, mainly for systems which can be described 
by area-preserving maps. A globally diffusive transport, (R 2) = 2Dr ( ( )  de- 
notes initial-ensemble average, R is some radius vector in the phase space, and 
D is the diffusion coefficient), is often observed numerically (see, e.g., Chirikov 
1979; Dana and Fishman 1985) but occurs rigorously only in very special cases 
(Cary and Meiss 1981). The self-similar islands-around-islands hierarchy in phase 
space [Meiss 1986; Zaslavsky et al. (1997)] should be responsible to the anoma- 
lous global diffusion, (R 2) c¢ t u (0 < # < 2) [Shlesinger et al. 1993; Zumofen 
and Klafter 1994; Zaslavsky et al. (1997); Afraimovich and Zaslavsky (1997)], 
which may be described by Lgvy random-walk processes (Shlesinger et al. 1993; 
Zumofen and Klafter 1994). 

Because of the complex phase-space structure of a generic Hamiltonian system, 
chaotic transport is usually quite inhomogeneous locally (Karney 1983; MacKay 
et al. 1984; Dana et al. 1989~ Afanasiev et al. 1991). In this paper, we show that 
one can also observe a high inhomogeneity in the global-transport properties due 
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to the following simple scenario. Consider a Hamiltonian H in which one coor- 
dinate, say q, is cyclic, i.e., it does not appear in H. The conjugate coordinate 
("momentum"),  p, is then a constant of the motion and appears in H as a "pa- 
rameter", H = H(R,  t; p). Here R denotes all the other phase-space coordinates 
and, for the sake of generality, a dependence on time t is included. Our crucial 
assumption is that  the dynamics in the R phase space depends nontrivially on 
the "parameter" p. Now, since p is actually a coordinate, a generic, realistic en- 
semble of particles will exhibit all values of p. Such an ensemble can be divided 
into sub-ensembles characterized by well-defined values of p. The assumption 
above then implies that different sub-ensembles will be characterized by differ- 
ent global-transport properties, e.g., a normal-diffusion coefficient D(p) or an 
anomalous-diffusion exponent p(p). As a result, a variation of these properties 
throughout the entire ensemble will be observed. 

We show here that  this variation can be actually quite strong by considering the 
realistic model system of charged particles interacting with an electrostatic wave- 
packet in a uniform magnetic field. This system is described by the Hamiltonian 

H = f12 / (2M)  ÷ K V ( k x ,  ~) , (1) 

where Fl = p - e A / c  is the kinetic momentum of a particle with charge e and 
mass M in a uniform magnetic field B (along the z-axis), K is a parameter, k is 
the wave-vector (in the z-direction), and V is a general function describing the 
electrostatic wave-packet. This function is periodic in both kx (with period 21r) 
and time t (with period T). Without loss of generality, the values of M and k 
will be both set to 1 from now on. 

To see that  (1) is a Hamiltonian of the kind described above, let us express 
it using the natural degrees of freedom in a magnetic field. These are given by 
the conjugate pairs (xe, Yc) (coordinates of the center of a cyclotron orbit) and 
( I I , ,  Fly), see Johnson and Lippmann (1949). Defining u = Fl,/la;[, v = Hu/w,  
where w = e B / c  is the cyclotron frequency, and using the relation xc = x + 
II~/w = x + v (easily derivable from simple geometry), (1) can be rewritten as 
follows 

g = w2(u 2 + v 2 ) / 2 +  K V ( z ¢  - v, t) . (2) 

It is now clear that  y¢ is cyclic in H, so that it corresponds to the coordinate q 
above. The conserved "momentum" p is then x¢. 

In what follows, we shall assume the simple wave-packet 

V ( x ,  t ) = - c o s x  ~ ~ ( t - s T )  , 
$ ~ - - - - O O  

reducing (2) to the Hamiltonian of a kicked harmonic oscillator. The latter sys- 
tem has been investigated extensively by Zaslavsky et hi. (1986) (see the review 
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article by Zaslavsky 1991) who assumed, however, the very specific value z~ = 0 
in (2). These investigations have led to the discovery of the well-known prop- 
erties of this system. Since the harmonic oscillator is degenerate (linear in the 
action), the nonlinear perturbation in (2) is strong (in the sense of KAM theory) 
for all values of K,  especially under resonance conditions, wT = 2~rm/n (m and 
n are coprime integers). One then expects, on the basis of general arguments, 
that  unbounded chaotic motion of (u, v) should exist for arbitrarily small val- 
ues of K in the resonance case. This motion is observed to take place diffusively 
on a "stochastic web" [see Fig. l(a)], analogous in some aspects to the Arnoi'd 
web. For n = 3, 4, 6, the web has crystalline symmetry (triangular, square, 
hexagonal), while for all other values of n > 4 it has quasicrystalline symmetry. 
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Fig. 1. Portions of the stochastic webs for m/n = 1/4, K = 1.4, and (a) x¢ = 0, (b) 
are = r/2.  Each plot contains 40 000 points of chaotic orbits, generated by iterating 
100 times an ensemble of 20 × 20 initial conditions near the origin with the map 
corresponding to (2). Notice that the diffusion rate in case (b) is slower than in case 
(a). Without loss of generality, the value of ~ in (2) is set to I in this paper. 

The need to consider general values of z¢ has been pointed out only recently by 
Dana and Amit (1995), who developed a general formalism for calculating the 
normal-diffusion coefficient D(zc) for Hamiltonian (2) as a function of ze. Here 
D(z¢) is defined, under resonance conditions wT = 27rm/n, by 

1 2 
D(z¢) = l ina  ~ (R,,,)E(~o) , R ~ = = . ( u , - u o ) 2 + ( v , - v o )  2 (3) 

(assuming the limit exists), where (u,, v,), s integer, are the values of (u, v) at 
times sT  - 0 and the average ( ) is taken over a sufficiently large sub-ensemble 
E(z , )  of initial conditions (u0, v0) at fixed x,. As already emphasized by Dana 
and Amit (1995), the average D ~  of D(zc) over zc is of practical importance, 
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since in an experiment one usually measures the average diffusion rate of a 
generic ensemble, exhibiting all the values of zc. Here we shall focus on the 
dependence of the global-transport properties on z¢. An impressive example 
showing this dependence was given, apparently for the first time, by Dana (1994) 
in a quantum-chaos context: for the n = 4 web (square crystalline symmetry),  
and for small K,  the diffusion rate for zc = 7r/2 is much slower than that  for 
ze = 0. Traces of this phenomenon can be observed already for K not very small, 
as shown in Fig. 1. Later, Pekarsky and Rom-Kedar (1997) have shown that  for 
small K the n = 4 web undergoes a dramatic structural change, mediated by a 
sequence of bifurcations, as z¢ is varied from z~ = 0 to zc = ~r/2 (this can also 
be seen in Fig. 1). They showed that the width of the stochastic layer of the web 
is proportional to exp(-~r2/K~), where e = 1 for zc = 0 and e = 2 for zc = rr/2. 
This explains the strong difference in the diffusion rate in the two cases for small 
K,  observed by Dana (1994). 

Analytical expressions approximating D(xc) to high accuracy for K sufficiently 
large can be obtained using the formalismof Dana and Amit (1995). For example, 
for the n = 4 web we find 

{~Jo(K)  1 eo 
D(x~) ~ I¢ 2 + ~ cos(2xc) + ~ E exp(-2irx~) x 

r ~ - - - 0 0  

[ ( - 1 ) ' J o ( r K ) J ] ( K )  - J 2 ( r K ) J 2 r ( K )  cos(4xe)] } , (4) 

where J , ( K )  is a Bessel function. For K sufficiently large, the expression in (4) 
can be simplified by identifying the dominant terms in the sum over r. 

A variation of the global-transport properties, which is much stronger than that 
in the normal-diffusion case [e.g., D(x¢)  in (4)], can be observed when anomalous 
diffusion is present, 

2 s,,(~) , (5 )  

where R~ is defined by (3) and #(z~) is the anomalous-diffusion exponent, 
/~(Xc) ¢ 1. "Superdiffusion", with 1 < /J(zc) < 2, can be observed for suffi- 
ciently large values of K in the case of the crystalline webs (n = 3, 4, 6). In this 
case, the translational symmetry allows for the existence of generalized periodic 
orbits, the "accelerator modes". Their defining equations are 

u , , + ~ ,  = u , ,  + 2rrjl , v,,,+~,, = v , ,  + 2 r j 2  , (6) 

for all integers s, where l is the minimal period and 2 r ( j l ,  j~) is a lattice vector 
characterizing the accelerator mode. If sn  is replaced by s n  + r, r = 1, ..., I n -  1 

(corresponding to the "other" points of the periodic orbit), Eqs. (6) will be sat- 
isfied with (jl ,  j2) replaced by O r ( j x ,  j2 ) ,  where O is a rotation by an angle 
c~ = 2 r r m / n .  If the accelerator mode is linearly stable, each point of it is usually 
surrounded by a stability island. All the points within an island move essentially 
(i.e., on a sufficiently large scale) according to Eqs. (6), leading to "acceleration", 
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R~l,~ o¢ s ~ (i.e., g = 2). On the other hand, points in the chaotic region (stochas- 
tic layer of the web) will "stick" near the boundaries of the islands, following 
their accelerating motion for a long time interval, and are ejected afterwards 
back inside the chaotic region. After some time, they will eventually stick again 
near the boundaries of the islands. This process explains figuratively the origin 
of the global suPerdiffusion with an exponent /J taking values between /~ = 1 
(corresponding to the normal diffusion expected in a strongly-chaotic regime or 
in the absence of accelerator islands) and # = 2 (corresponding to acceleration 
within the islands). A quantitative explanation of superdiffusion and a general 
relation between/~ and the self-similarity properties of accelerator islands have 
been given recently by Afraimovich and Zaslavsky (1997) [see also the recent 
review article by Zaslavsky et al. (1997)]. 

In the case of our system, the crucial observation is that,  for a given value of 
K,  accelerator islands may exist only in some intervals of z¢. In these intervals, 
the characteristics of the islands usually vary strongly with zc. This is shown 
in Fig. 2 for the n = 4 web at K = 3.25. For this value of K,  we were able 
to find only accelerator modes of minimal period I - 1 with (jl  - 1, j2 = 0) 
and (Jl - 1, j2 = 1) [recall the definition (6)]. These modes exist only in the 
ze-intervals covered by the several curves in Fig. 2. The modes are linearly stable 
and give rise, usually, to accelerator islands only if the trace of their linearity- 
stability matr ix  is between - 2  and 2 (the two horizontal dashed lines in Fig. 
2). Fig. 3 shows an enlargement of Fig. 2 in the main interval of xc where the 
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Fig. 2. Trace of the linear-stability matrix as a function of x¢ for the accelerator modes 
with minimal period I = 1 in the case of n = 4 and K = 3.25. These modes exist only 
in the intervals of x¢ covered by the several curves, and are linearly stable only if the 
trace is between - 2  and 2 (the two horizontal dashed lines). The label (1, 0) or (1, 1) 
near each curve is the type (jl, j2) of the corresponding mode. 
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(1, 1) accelerator mode e~sts. We also plot here a properly normalized area 
S(zc) of the corresponding accelerator island as a function of z¢. Obviously, 
S(xc) vanishes for zc outside the interval. 

0:3 
(13 

,<£ 

-C3 
c -  
03 
(13 
(D 
03 

I ' - -  

5.5  

4 .5  

3 .5  

2 .5  

1.5 

0 .5  

- 0 . 5  
1 .27  1.47 1 .67 1 .87 

X c 

Fig. 3. An enlargement of Fig. 2 in the main z¢-interval of existence of the (1, 1) 
accelerator mode. The dashed line with diamond symbols gives the area of the cor- 
responding accelerator island, in units such that the maximum value of the area, at 
x~ = ~r/2, is 5. The area was actually computed only for x~ _< ~r/2, and the reflection 
symmetry around x~ -- 7r/2 was used to complete the plot for xc > rr/2. 

We have performed an accurate calculation of the anomalous-diffusion exponent 
p(zc) (n = 4, K = 3.25) for the same values of xc used to plot the curve 
of S(z¢) in Fig. 3. This calculation was made as follows. For a given value of 
zc, a large ensemble of 400 x 400 initial conditions, uniformly distributed in 
the 27r × 2~" unit cell of the web, was iterated 1219680 times with the map 
corresponding to (2). Initial conditions inside accelerator islands were easily 
identified by their accelerating motion, and were removed from the ensemble. 
The remaining ensemble, E ( z ¢ ) ,  should consist then entirely of initial conditions 
inside the chaotic region. Indeed, we have found that  for times t = sn  < 1219680 
the ensemble E(zc)  evolves reasonably well according to the anomalous-diffusion 
law (5). The anomalous-diffusion exponent #(z¢) was determined from the best 

R 2 fit of the function f ( s )  = B s  u to ( ,-)E(=o)" The results are shown in Fig. 4. The 

strong oscillatory variation of p with zc, from/~ ~ 1 (i.e., nearly normal diffusion) 
to /z  ~ 1.5, is quite remarkable! Notice that the oscillatory behavior of/J(zc) is 
quite different from the monotonous one of S ( x c )  (the area of the accelerator 
island in Fig. 3). In particular, the maximal value of #(z~) is not attained at 
x¢ = ~r/2, as in the case of S(z¢). In fact,/z(zc) is really determined not by S(x~) 
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but by the self-similarity properties of the accelerator islands [Afraimovich and 
Zaslavsky (1997); Zaslavsky et al. (1997)]. 
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F i g . 4 .  Anomalous-diffusion exponent ~(xc) for n = 4 a n d  K = 3.25,  calculated as 
explained in the text. As for the area curve in Fig.  3, p(x¢) was  a c t u a l l y  computed 
on ly  for  xc <_ 7r/2, and the reflection symmetry around xc = r r /2  was  u s e d  to complete 
the plot for xc > ~r/2. 

In conclusion, we have shown that global-transport properties, such as the 
normal-diffusion coefficient D and the anomalous-diffusion exponent #, can vary 
throughout a chaotic ensemble due to a general and simple scenario. This has 
been illustrated by a realistic model system of charged particles interacting with 
an electrostatic wave-packet in a uniform magnetic field. For this system, we have 
found that the variation of the global-transport properties, mainly the anoma- 
lous ones, can be remarkably strong. We expect that this finding should have 
experimental applications to "filtering" or preparing sub-ensembles character- 
ized by well-defined values of the conserved momentum, e.g., zc. This can be 
easily accomplished, for example, by considering electrostatic wave-packets de- 
pending on a "phase" ¢, i.e., V = V ( z - ¢ ,  t), and by adjusting ¢ so the maximal 
transport rate is attained at the desired value of zc. Other theoretical aspects 
of the problem considered in this paper will be studied in future publications. 
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