Quantum Walks: First Detected Passage Time

Harel Friedman

Advisor:
Prof. Eli Barkai
In collaboration with:
Prof. David A. Kessler

H. Friedman, D.A. Kessler, E. Barkai, “Quantum renewal equation for the first detection time of a quantum walk”, in preparation
Outline

• Classic random walk
• Goal
• Quantum walks
• The measurement process
• Z transform
• Results:
 • Rings
 • Infinite lattices
Classic random walk
Classic first passage time

• A fundamental question about a classical random walker: How long does it take it to reach a certain region for the first time?

• Renewal equation:

\[P(\vec{r}, t) = \delta_{r,0}\delta_{t,0} + \sum_{t'=0}^{t} F(\vec{r}, t') P(0, t - t'), \]

relates between spatial distribution \(P(\vec{r}, t) \) and first passage time distribution \(F(\vec{r}, t) \).
Classic first passage time

• For a 1D Brownian motion, the first passage time distribution is:

\[F(x_0, t) = \frac{x_0}{\sqrt{4\pi Dt}} e^{-\frac{x_0^2}{4Dt}}. \]

• It has a fat tail of \(t^{-3/2} \)

\[
\int_0^\infty F(x_0, t) dt = 1
\]

\[
\int_0^\infty tF(x_0, t) dt \to \infty
\]

\[x_0 = 6, D = 0.5 \]
Goal – quantum FPT

• We want to discuss the problem of first passage time of a quantum particle.

• Problems:
 • Position has no binary meaning, so “passage” is ambiguous.
 • There is no first passage time operator.
Quantum walks

$|\langle x | \psi(\gamma t = 50) \rangle|^2$
Quantum walk

- There are two types of quantum walks:
 - Quantum coin
 - Continuous propagation by the Hamiltonian

- For an infinite lattice, with initial condition localized on the origin and tight-binding Hamiltonian $H = -\gamma \sum_{l=-\infty}^{\infty} (|l\rangle\langle l+1| + |l+1\rangle\langle l|)$, the propagation, according the Schrodinger equation is ($\hbar = 1$):
 \[
 \langle x|\psi(t)\rangle = (-i)^x J_x(2\gamma t).
 \]
Quantum first detected passage time

• We discuss a system described by a time independent Hamiltonian \hat{H} and a propagator $U_t = \exp(-iHt)$.

• A region of the lattice is observed stroboscopically with time interval τ. For simplicity, the detected region will contain a single site, $|0\rangle$.

• The measurement has two possible outcomes: the particle is either detected or it isn’t. We will get a sequence of no, no, no, no, ..., yes.
Quantum first detected passage time

• The first detected passage time: What is the probability that the first successful measurement of the particle is the n-th measurement?

• Spoiler: We will get a quantum renewal equation for the amplitudes on the detected site before the measurements:

$$\phi_n = \langle 0 | U_{n\tau} | \psi(0) \rangle - \sum_{k=1}^{n-1} \langle 0 | U_{(n-k)\tau} | 0 \rangle \phi_k$$

$$F_n = |\phi_n|^2$$
The measurement process
The first measurement

• The wave function propagates freely for time τ

$$|\psi(\tau^-)\rangle = U_\tau |\psi(0)\rangle$$

• Then the site $|0\rangle$ is measured, and the particle is detected there with probability

$$P_1 = |\langle 0|\psi(\tau^-)\rangle|^2$$

• If the particle is detected, the experiment is finished. Otherwise, the wave collapses in $|0\rangle$ and the rest of renormalized:

$$|\psi(\tau^+)\rangle = (1 - P_1)^{-1/2} (\hat{1} - |0\rangle\langle 0|) |\psi(\tau^-)\rangle$$
Later measurements

- The process is continued, the waveform propagates for time \(\tau \), collapses in \(|0\rangle \) and renormalized.

\[
|\psi(n\tau^-)\rangle = U_\tau |\psi((n - 1)\tau^+)\rangle
\]

\[
P_n = |\langle 0 |\psi(n\tau^-)\rangle|^2
\]

\[
|\psi(n\tau^+)\rangle = (1 - P_n)^{-1/2} (\hat{1} - |0\rangle\langle 0|) |\psi(n\tau^-)\rangle
\]
First detection amplitudes

• We can factor the previous renormalizations by:

\[
\phi_n = \left[\prod_{k=1}^{n-1} (1 - P_k)^{+1/2} \right] \langle 0 | \psi(n\tau^-) \rangle
\]

• Together with

\[
F_n = \prod_{k=1}^{n-1} (1 - P_k)P_n
\]

we get

\[
F_n = |\phi_n|^2.
\]
Calculating ϕ_n

• To sum up, the first detection wave function propagates once for time τ, and ever since that it collapses in $|0\rangle$ and propagate again, $n - 1$ times.

$$\phi_n = \langle 0|[U_\tau (1 - |0\rangle\langle 0|)]^{n-1}U_\tau |\psi(0)\rangle$$

• Equivalently, we get the following quantum renewal equation:

$$\phi_n = \langle 0|U_{n\tau}|\psi(0)\rangle - \sum_{k=1}^{n-1} \langle 0|U_{(n-k)\tau}|0\rangle \phi_k$$
Z transform
The Z transform

- We now use the following Z transform:

\[\hat{\phi}(z) = \sum_{n=1}^{\infty} \phi_n z^n, \quad (n \to z) \]

to see that

\[\hat{\phi}(z) = \frac{\langle 0|\tilde{U}(z)|\psi(0)\rangle}{1 + \langle 0|\tilde{U}(z)|0\rangle} \]

where \(\tilde{U}(z) \) is

\[\tilde{U}(z) = \frac{1}{z^{-1}\exp(iH\tau) - 1} \]
Quantum Zeno effect

• In the $\tau \to 0$ limit the $\hat{\phi}(z)$ equation reduces to:
 \[\hat{\phi}(z) = \langle 0|\psi(0)\rangle z + O(\gamma\tau) \]

• This is linear by z, so the particle can be detected only in the first attempt, and its probability is determined by the projection of the initial wave function over the detected site.
 \[\phi_1 = \langle 0|\psi(0)\rangle, \phi_{n>1} = 0 \]

• This is called the quantum Zeno effect.
Energy spectrum

• In the energy spectrum, $\hat{U}(z)$ is diagonal.

• We now treat tight-binding Hamiltonian for a ring with L sites:

$$H = -\gamma \sum_{l=0}^{L-1} (|l\rangle\langle l+1| + |l+1\rangle\langle l|), \quad |L\rangle \equiv |0\rangle$$

• For a localized initial condition $|\psi(0)\rangle = |x_0\rangle$:

$$\hat{\phi}(z) = \frac{1}{L} \sum_k e^{-2i\pi\frac{kx_0}{L}} \left[z^{-1} \exp \left(2i\gamma \tau \cos \frac{2\pi k}{L} \right) - 1 \right]^{-1}$$

$$= \frac{1}{1 + \frac{1}{L} \sum_k \left[z^{-1} \exp \left(2i\gamma \tau \cos \frac{2\pi k}{L} \right) - 1 \right]^{-1}}$$
Recovering properties from $\hat{\phi}(z)$

$$\phi_n = \frac{1}{2\pi i} \int z^{-n-1} \hat{\phi}(z) dz$$

$$1 - S_\infty = \sum_{n=1}^{\infty} |\phi_n|^2 = \frac{1}{2\pi} \int_{0}^{2\pi} |\hat{\phi}(e^{i\theta})|^2 d\theta$$

$$\langle n \rangle = \sum_{n=1}^{\infty} nF_n = \frac{1}{2\pi} \int_{0}^{2\pi} \left[\hat{\phi}(e^{i\theta})\right]^{*} \left(-i \frac{\partial}{\partial \theta}\right) \hat{\phi}(e^{i\theta}) d\theta$$
Interim summary

• We described a simple quantum system with projective measurements.

• We showed that the first detection probability is related to the not renormalized wave function projection on the detected site.

• We found the Z transform of the not-renormalized waveform for a tight-binding ring with L sites.

• We can inverse the Z transform in order to get the first detection properties.
Results
Rings: $|0\rangle \rightarrow |0\rangle$ transition

1) A particle which started on the detected site will be detected with probability 1. It does not depend on energy spectrum.

2) The average number of detection attempts is:

$$\langle n \rangle = \begin{cases}
(L + 2)/2, & L \text{ is even} \\
(L + 1)/2, & L \text{ is odd}
\end{cases}$$

3) There are exceptional τ values, where the average is lower.

$$\Delta E\tau = 2\pi n$$
\[\langle n \rangle_N \]

\[\gamma \tau \]
Benzene ring

• Total detection probabilities \((1 - S_\infty)\) for various initial conditions:

<table>
<thead>
<tr>
<th>(x_0)</th>
<th>(0 < \gamma \tau < 2\pi^*)</th>
<th>0</th>
<th>(\frac{1}{2}\pi)</th>
<th>(\frac{2}{3}\pi)</th>
<th>(\pi)</th>
<th>(\frac{4}{3}\pi)</th>
<th>(\frac{3}{2}\pi)</th>
<th>(2\pi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1/2</td>
<td>0</td>
<td>1/6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1/6</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1/2</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>2/3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2/3</td>
<td>0</td>
</tr>
</tbody>
</table>

• Share exceptional \(\tau\) values with \(\langle n \rangle\) where \(x_0 = 0\).
Benzene ring, $|3\rangle \rightarrow |0\rangle$ transition

- Diverges where $S_\infty \neq 0$.

- Has analytic form:
 \[
 \langle n \rangle = \frac{27 + 23 \cos(\gamma \tau) + 24 \cos(2\gamma \tau) + 9 \cos(3\gamma \tau) - 2\cos(4\gamma \tau)}{9 \sin^2(2\gamma \tau)}
 \]

- Singular point where the equation is not valid is $\gamma \tau = \frac{2}{3} \pi$, although $S_\infty = 0$.
Benzene ring, $|3\rangle \rightarrow |0\rangle$ transition
Infinite lattice

• For infinite lattice, $L \to \infty$, (initial waveform is $|\psi(0)\rangle = |0\rangle$) we get:

$$\hat{\phi}(z) = 1 - \frac{1}{\sum_{n=0}^{\infty} z^n J_0(2\gamma \tau n)}$$

• Small ns can be calculated by expanding $\hat{\phi}(z)$ to Taylor series of z.

• Large ns can be calculated asymptotically.
Infinite lattice, large ns

• After a long calculation, one gets:

$$F_n \approx \frac{4\gamma\tau}{\pi n^3} \cos^2 \left(2\gamma\tau n + \frac{\pi}{4}\right)$$

for all $\gamma\tau$, except where $\gamma\tau = \frac{\pi}{2} k$, where we get:

$$F_n \bigg|_{\gamma\tau = \frac{\pi}{2} k/2} \approx \frac{k}{4n^3} = \frac{1}{4} \lim_{\gamma\tau \to \pi k/2} F_n$$
\[\gamma \tau = 0.8 \]
\(\gamma \tau = \pi / 3 \)
$1 - S_\infty$
Summary

• The first detection event statistics of a quantum system with periodic projective measurements can be successfully treated with our quantum renewal equation.

• Our formalism allows us to discover several quantum behaviors:
 • Rings have a strong dependence on the initial condition, and singularities at specific observation periods.
 • Infinite lattices has a power law decay of n^{-3} with oscillations.
Thank you for listening!